Francis Thicke on Farming Alternatives, CAFOs, and the Future of Farming

Francis and Susan Thicke

Francis and Susan Thicke own and operate Radiance Dairy near Fairfield, Iowa. Photo: Courtesy Francis Thicke

For the past several weeks, Blue Planet Green Living (BPGL) has been running portions of our interview with Francis Thicke (pronounced TICK-ee), candidate for Iowa Secretary of Agriculture.

Francis and his wife, Susan, are organic dairy farmers who recently received the 2009 Spencer Award for Sustainable Agriculture. Francis is also a scientist and a highly respected thought leader on agricultural policy.

In this, the fourth post in a continuing discussion with Thicke, he talks about changing the minds of Big Ag with sustainable models, the rules regarding concentrated feeding operations (CAFOs), and his vision for the future of farming in Iowa. We believe Thicke’s views about agriculture are applicable not only to Iowa, but also to the nation.

If you are an Iowan who believes in sustainable farming practices, please join us in supporting and — most important — casting your vote for Francis Thicke in the fall. If you have questions for Mr. Thicke, please write a comment below or contact him by email at fthicke@iowatelecom.net . —  Julia Wasson, Publisher


Farming Alternatives

BPGL: Big Ag right now seems to enjoy the concept of larger farms, fewer fence rows, fewer trees in the landscape or anything that competes with crops for moisture and sunlight. Traditional farmers are eliminating a large amount of the biodiversity, not just in the soil, but in the air and water. There are just fewer creatures around. We’re also losing vast quantities of soil through erosion.

Yet many of the farmers we’ve talked to absolutely believe they’re doing the right thing. It’s very difficult to educate them that even small changes would be helpful over a period of time. How can anyone convince them to change?

Francis Thicke speaks to farmers on his farm.

Francis Thicke shares information with fellow farmers on a field day at Radiance Dairy. Photo: Courtesy Francis Thicke

THICKE: I think the way to do it is to find alternative models that are successful, that are ecologically sound, profitable, and socially responsible. And then try to expand adoption of those successful models, rather than try to fight what we’re not necessarily in favor of.

For example, in Wisconsin, grazing dairy farms — as opposed to confinement dairy farms — were considered new and innovative about 20 years ago. Grass-based dairies can be designed to be ecologically sound and productive and competitive. Research at the University of Wisconsin shows that grazing dairy farms are as profitable — or more profitable — than confinement dairy farms. Over time, about 25 percent of the dairy farms in Wisconsin have become grazing dairy farms again.

I speak at a lot of conferences on organic and grass-based dairy production.  These are the kind of things that spread by word of mouth and by farmers visiting other farmers. We get lots and lots of visitors and tours to our organic, grass-based dairy farm. Farmers learn from other farmers to a great degree — often more than from books or educational programs. That’s one way to spread these successful models.

BPGL: There are a lot of agricultural models that are good in Europe, especially their standards for CAFO farming and water quality, cleaning up their rivers and such. But here in Iowa, Big Ag just won’t accept a lot of those standards. Big Ag seems to fight everything in the legislature that makes farming more sustainable.

Better Standards for CAFOs

Veal calf in crate

Veal calves are often chained by the neck in small wooden crates where they are unable to walk or stretch their limbs. Photo: Courtesy Farm Sanctuary

THICKE: You’re right, but I think things are changing somewhat. I was surprised to see that Michigan recently passed a law that will phase out farrowing crates, chicken battery cages, and veal calf hutches. And California passed a new law that will outlaw tail docking, which is cutting off cows’ tails for the convenience of those who milk the cows.

The point is that we’re seeing more examples of society asking for better standards for how animals are raised. A recent article in the Farm Bureau Spokesman said that Michigan is the seventh state to ban gestation crates, the fifth to ban veal crates, and the second to ban chicken battery cages. California was the first to ban battery cages with Proposition 2. I think what we’re seeing here is citizens demanding changes in how agriculture is done.

BPGL: Do we have battery cages in Iowa?

THICKE: Iowa is the largest egg producer in the country, and most of the hens are in battery cages here in Iowa.

BPGL: That makes my skin crawl.

A female pig attempts to escape from an inhumane gestation crate. Abrasions are visible near her eyes - caused by constantly rubbing against the crate's metal bars. Photo: Courtesy Farm Sanctuary

THICKE: Relative to confinement agriculture, I’m calling for local control and also calling for increasing the separation distances of newly constructed concentrated animal feeding operations (CAFOs) from homes and rural communities. I’m also calling for requiring construction permits for smaller CAFO units. Right now, construction permits are required for 1,000 animal units and above, which equates to 2,500 or more hogs. Currently, many of the new CAFOs are being built just below the threshold requirement for a construction permit. For example, many hog CAFOs are being built to house 2,490 hogs, so they don’t require a construction permit and don’t need to go through the whole process of the matrix, and so on.

BPGL: What is the matrix? Is that a method for calculating how many head are in a CAFO?

THICKE: The master matrix scoring system was created by the legislature in 2002. The matrix scores applications for CAFO construction permits in a number of areas, including water quality, air quality, potential effects on neighbors, etc. The maximum number of points in the matrix is 100.

In the political process of implementing the matrix, it got watered down quite a bit, so it only requires a 50 percent score to pass. Most CAFO permit applications pass routinely, and they generally all take the same easy points. So, although the matrix was intended to make the process of qualifying for a CAFO construction permit a little more rigorous, it is largely ineffectual.

The Future of Agriculture

Radiance Dairy's grass-fed cows

The cows at Radiance Dairy are grass fed. Photo: Courtesy Francis Thicke

BPGL: Are you optimistic or pessimistic about the future of Iowa agriculture?

THICKE: I am optimistic. Although Iowa agriculture faces some major challenges — such as increasing energy costs and greater severity of weather events due to climate change — we have the scientific knowledge and technology to make our farming systems more resilient, energy efficient, ecologically sound, and socially responsible. Iowa agriculture can become part of a new and prosperous green economy.

Change is inevitable. The question is, will we change through our own design and creativity, or will we be forced to change by circumstances that control us because we have failed to take preemptive action? I am running for Iowa Secretary of Agriculture. to help foster visioning, dialogue, and action to take Iowa agriculture into the future.

This is the end of our conversation with Francis Thicke.

Joe Hennager

Blue Planet Green Living (Home Page)

Related Posts

Part 1: Francis Thicke on Biofuels, Biodiversity, and Erosion

Part 2: Francis Thicke on Renewable Energy

Part 3: Francis Thicke on Small Farms and Local Foods

Part 4: Francis Thicke on Big Ag, CAFOs, and the Future (Top of Page)

My 5: Francis Thicke, Organic Dairy Farmer, Political Candidate

Francis Thicke on Biofuels, Biodiversity, and Erosion

Susan and Francis Thicke with one of their grass-fed, organic dairy cows. Photo: Courtesy Francis Thicke

Susan and Francis Thicke with one of their grass-fed, organic dairy cows. Photo: Courtesy Francis Thicke

Francis Thicke is a soft-spoken, thoughtful man. He is also an accomplished scientist and an award-winning farmer. Thicke’s list of credentials is impressive, including selection by the W. K. Kellogg Foundation as a Policy Fellow in their Food and Society program, work as the National Program Leader for soil science for the USDA-Extension Service, and a current seat on the board of directors of the Organic Farming Research Foundation.

Most recently, Francis and Susan Thicke were selected as recipients of the 2009 Spencer Award for Sustainable Agriculture. The couple will be honored at the Leopold Center for Sustainable Agriculture on December 5 at the 9th Annual Iowa Organic Conference. Together, they own and operate Radiance Dairy near Fairfield, Iowa.

Thicke (pronounced TICKee) is also a candidate for Iowa Secretary of Agriculture. Blue Planet Green Living (BPGL) interviewed Thicke to learn about his vision for improving agriculture in Iowa. Not surprisingly, given his background and his interest in sustainability, Thicke has a lot of ideas that we thought you would find interesting — regardless where you live. Blue Planet Green Living endorses Thicke’s candidacy for Iowa Secretary of Agriculture.

This is the first in a series of conversations with Francis Thicke. — Julia Wasson, Publisher


Organic dairy farmer and scientist, Francis Thicke, is a candidate for Iowa Secretary of Agriculture. Photo: Courtesy Francis Thicke

Organic dairy farmer and scientist, Francis Thicke, is a candidate for Iowa Secretary of Agriculture. Photo: Courtesy Francis Thicke

BPGL: Why did you decide to run for Iowa Secretary of Agriculture?

THICKE: I see a lot of challenges coming down the road for agriculture in Iowa, as well as opportunities. I think we need new vision and new leadership to meet those challenges and take advantage of the opportunities.

One challenge is escalating energy costs. We saw last year how oil prices went through the roof. And that meant that input costs for agriculture went through the roof. Of course, oil prices came back down again, and the input prices are coming down.

But oil economists tell us we’re going to see this roller coaster of spikes and valleys in oil prices continue. And they’re going to keep trending upward.

That makes it difficult for an agriculture that’s so dependent on oil-based inputs. When oil prices are dropping, but farm input prices have not yet dropped, you get a mismatch of peaks and valleys, and it could be a real disaster for agriculture.

The bottom line is that we need to get off this treadmill of oil. We need to look for ways we can become more efficient in our agriculture and power our farms with locally and sustainably produced energy.

BPGL: What suggestions do you have for doing that?

THICKE: I have several. One thing is that agriculture is producing corn for ethanol that’s used in cars that run on the highway. That is not a very efficient use of our biofuels.

The average mileage for passenger vehicles, if you include SUVs along with cars, is about 22 miles per gallon. So, we’re putting ethanol in these very inefficient vehicles, and we’re not powering agriculture with our biofuels.

Just to see the irony of it, if we could increase our fuel mileage by only two miles per gallon on average, from 22 to 24 mpg, we would save more fuel than all the ethanol we produce in this country, which takes about one-third of the U.S. corn crop. We’re not using our biofuels energy-producing capacity very efficiently.

I would like to see future biofuels development be twofold: One, it uses perennial crops, which are more sustainable, more resilient cropping systems. And two, we target biofuels to power agriculture.

BPGL: Describe how you would use perennial crops for biofuel. I assume you’re talking about using a different process than is used to make ethanol with corn.

Pyrolysis — A New-Old Technology


THICKE: There are some promising new technologies on the horizon that are being developed now. One is called pyrolysis. It’s not a new process; it’s been around for years, and was used to make fuels during World War II.

Pyrolysis is a process of heating biomass at high temperature in the absence of oxygen. The result is gaseous and liquid fuels, which can be converted to gasoline and diesel fuel. Now there is some research showing that this can be done on a smaller scale than the huge-scale ethanol plants. It can be done on a local, cooperative scale, or even on a farm scale. If we develop the technology of pyrolysis to work on a local, or farm scale, we could use biofuels to power agriculture, making farms more energy self-sufficient, and keeping more profit on farms and in rural communities.

BPGL: Is pyrolysis more efficient than the process used to produce ethanol now?

THICKE: Pyrolysis produces more biofuel per unit of biomass than ethanol does. It’s a more efficient biofuel-production process.

BPGL: What are you cooking in pyrolysis?

Theoretically, any biomass could be used to make biofuel through pyrolysis. Photo: julia Wasson

Perennial prairie plants produce a lot of biomass and could be used to make biofuel through pyrolysis. Photo: julia Wasson

THICKE: Cellulosic materials. You could cook corn, but any organic material will work. What I’m suggesting is that we grow perennial crops, prairie plants, for example, or miscanthus, which is a perennial plant that produces a tremendous amount of biomass. It’s been looked at a lot in university research.

Miscanthus requires very little input, such as fertilizer, and it doesn’t require pesticides or herbicides. It’s a minimal-input cropping system. The advantage of using perennial crops for biofuels is that perennials do a much better job of protecting the soil from erosion and from the loss of nutrients — like nitrate and phosphate — to water resources, where they become pollutants.

BPGL: So there’s no burning of the cellulosic material. You’re just heating the plants and turning them into fuel.

THICKE: Yes, but at high temperature. It’s not really burning per se, it’s transforming. The first stage of normal combustion turns solid or liquid fuels into gases through super heating. Then the hot gases ignite and burn in the presence of oxygen. The byproduct of normal combustion is carbon dioxide and water. That first stage of combustion is a form of pyrolysis.

When using pyrolysis to make biofuels, the environment remains depleted of oxygen. Combustion does not go to completion, so the end products are combustible gases and liquids. The liquid product of pyrolysis is called bio oil, which is somewhat like crude oil. It depends upon how you control the conditions during pyrolysis whether you get more gaseous or liquid fuels. These fuels can be transformed into gasoline or diesel fuel.

BPGL: Who is doing the research on this?

THICKE: Iowa State University has a project, but there are projects all over the country. Google “pyrolysis,” and you’ll see that there’s a lot going on.

BPGL: So, the energy it takes to create the fuel comes from the same fuel that you’re producing?

THICKE: Yes. An exothermic reaction is one that gives off heat when you burn something. But pyrolysis is slightly endothermic; it takes a certain amount of heat input to make the reaction occur. So you would have to burn some of the fuel — a small portion — to keep the high temperature.

Increasing Efficiency of Biofuels


BPGL: If it takes energy to heat the cellulosic material, is it that efficient?

THICKE: Yes. I’ve asked scientists working on pyrolysis about this. They said that the overall net energy is more per unit of biomass than you get with ethanol production. If you take a biomass material — even corn — and use pyrolysis, there should be a slightly more efficient gain of energy than if you made ethanol from it, including the input of heat.

So, first, we need to become more efficient and sustainable in biomass crop production by using perennial cropping systems, which are resilient and help protect soil and water quality. Second, if it can be done on a small scale — and a research project at Iowa State University indicates that it can — then you can do it at a farm scale. And that means, you could produce these fuels right on the farm. There is some research going on that indicates you could maybe even make it into diesel and gasoline on a farm scale.

BPGL: Can you cook any type of carbon-base material? Any type of grasses? It doesn’t have to have a sugar base?

THICKE: No, it doesn’t. Carbohydrates, lignins — any biomass, any reduced-carbon compound like that will work.

BPGL: Such as wood, trees, things like that?

Wood could be used to create biofuels through pyrolysis. Photo: Joe Hennager

Wood can be transformed into biofuel through pyrolysis. Photo: Joe Hennager

THICKE: Yes, absolutely. As a matter of fact, a few months ago, there was a story in the Des Moines Register about a man who had a pickup truck with a small pyrolysis unit on the back. He was throwing wood in there, and he was driving on the highway, powering his pickup truck with pyrolysis. He could go 80 mph down the highway, he said.

It’s a demonstration, and I certainly wouldn’t think it would be an efficient way to fuel cars. But, it does show that you can do it on a small scale. If you do it on a farm scale, the neat thing is that you could power your farm with biofuels.

With corn-based ethanol production, farmers produce corn, which is a commodity, for which they get paid wholesale prices. To power their farms, they have to buy fuel at retail prices. If they could produce fuel on their farms, not only could they power their farms, but they could sell any excess fuel they produced at nearer to retail price. So this would be good rural economic development, in my mind.

Corn-based ethanol production has brought some economic development to Iowa. But, corn is not a resilient crop on the landscape. It leaves the soil vulnerable to erosion and the loss of fertilizer nutrients, which can become pollutants to water resources.

Also, when large corn-ethanol plants are owned by outside interests instead of being owned locally, agricultural wealth is extracted from rural communities. For example, some of the ethanol plants that went bankrupt last year were bought up by an out-of-state, multinational oil-refinery company. That puts the same industry that retails fuel to farmers in a position of extracting the profits of value-added biofuel production. So, you can see the potential economic advantage for farmers if they could produce biofuels on the farm to power their farms. They would retain much more wealth in their own rural communities.

BPGL: Is the pyrolysis technology ready for farmers to use on their land today?

THICKE: This is in the research and technology development stage. I think one of the Iowa projects was funded by the Iowa Power Fund. It’s something that universities should be picking up and working hard at.

What I advocate for is that we make a concerted effort to try to develop these kinds of technologies. It would help advance both rural economic development and sustainable farming systems.

BPGL: There are so many things that are carbon based that could be burned. Everything from animal feces to secondary crops.

THICKE: A big one would be garbage waste. A lot of the garbage waste — like wood and cardboard and things like that — could be used. Even grass clippings, tree leaves… It’s a tremendous opportunity.

Biochar – A Promising Soil Amendment


THICKE: A third byproduct of pyrolysis, besides the gaseous and liquid fuels, is called biochar, which is similar to charcoal. Biochar functions like humus when added to soil. It has properties that help soils hold nutrients, and it increases the water-holding capacity of soils. It also can be used for virtually anything charcoal is used for — a whole variety of uses, industrially.

Biochar has a lot of promise for use as a soil amendment, which is something that you would use to improve the soil. Normally, people think of soil amendments as fertilizers or lime, or anything that you add to the soil to improve it. Biochar doesn’t break down easily, so it persists for a long time in the soil, and it increases soils’ beneficial properties.

There are some ancient soils in Brazil, called terra preta. People have wondered over the centuries why these soils were so productive. They are dark, black soils that are highly productive with very little input; they never seem to stop producing.

Geologists and soil scientists are speculating that many centuries ago, some culture had a way of doing something similar to pyrolysis; they made a type of biochar, and put it into the soil. The biochar made terra preta soils tremendously productive. So we don’t even know the extent biochar would be useful as a soil amendment, but it’s going to be exciting to see what potential it has.

Preventing Erosion with Cover Crops


BPGL: Earlier you mentioned multiple challenges to agriculture. What is another one?

THICKE: Another challenge coming down the road is weather extremes due to climate change. Climatologists are telling us that’s what we are going to be seeing, when we talk about global warming or climate change. The way it will affect agriculture is that we’re going to be seeing extremes like droughts and flooding, high-intensity weather events. Iowa’s current cropping systems are not resilient enough to be able to handle that.

Last year, with the hard rainfalls and flooding, nearly 10 percent of Iowa’s cropland suffered soil erosion rates of 20 ton per acre. Two-thirds of Iowa’s land surface is covered in corn and soybeans. So our cropping systems are not very resilient, and they don’t absorb rainfall as well as perennial cropping systems would.

Soil Erosion is a major problem for Iowa farmlands. Photo: Joe Hennager

Soil erosion is a major problem for Iowa farmlands. Photo: Joe Hennager

BPGL: Is there a way at the state level to promote changing the monoculture that we see in Iowa farming, so we can get more biodiversity in our crops?

THICKE: Yes, there are things we can do to make our landscape more biodiverse and resilient. There are several ways we can approach this. One — and we can do this through programs at the state level — is to try to get more cover crops on the land. For example, after corn and soybean crops are harvested in the fall, the land is not well protected from soil erosion and nutrient leaching. If a cover crop, like rye or hairy vetch, were planted to grow during late fall, winter and early spring, soil erosion and nutrient leaching would be reduced, which would help reduce hypoxia in the Gulf of Mexico. That’s one thing we can do.

BPGL: Are cover crops something that farmers can sell, as an added source of income?

THICKE: With cover crops, you normally don’t harvest and sell them. They are intended to be returned to the soil, to build the soil. They are planted to protect the soil and to absorb nutrients after harvesting corn or beans. In the spring, before planting annual crops again, cover crops are returned to the soil. As the cover crop decomposes in the soil during the summer, it provide nutrients for the growing summer crop. The added residue on the soil from the cover crop also helps protect the soil from erosion.

The cover crop could be killed in the spring either with tillage or through no-till farming methods [without plowing the plants under the soil] using a herbicide like Roundup. That would be a popular way conventional farmers would do it.

BPGL: Would you use that method — no-till, with Roundup?

THICKE: As an organic farmer, I wouldn’t do that. But that’s a common practice. It would be good for protecting the soil, and conventional farmers are going to be using the Roundup herbicide anyway.

However, there is new research being done now on no-till organic farming, which looks very promising.  In no-till organic farming you use a cover crop, like rye, for the purpose of suppressing weed growth, in addition to the reasons we talked about earlier. The rye crop is killed in the spring with the use of a special tool called a roller/crimper, which is a roller with sharp fins on it that knocks down, crimps and kills the rye plants.

BPGL: I would think even conventional farmers would like that idea.

THICKE: That’s a good point. They might. They would need special equipment, but this is something that’s being developed. There’s some research being done at Iowa State University on no-till organic farming. It’s been developed out east, in North Carolina and Pennsylvania. It’s a coming thing that could be done by conventional farmers.

BPGL: It seems like there’s a job opportunity for someone to have a crimper that they take from farm to farm.

THICKE: Right, it could be. However, a roller/crimper would not be a real expensive piece of equipment, compared to the other field equipment farmers use. This is something that needs to be demonstrated on a wide scale so that farmers can see it work. They are not going to want to do it unless they see it working.

End of Part 1 in a continuing conversation with Francis Thicke.

Joe Hennager

Blue Planet Green Living (Home Page)

Related Posts

Part 1: Francis Thicke on Biofuels, Biodiversity, and Erosion (Top of Page)

Part 2: Francis Thicke on Renewable Energy

Part 3: Francis Thicke on Small Farms and Local Foods

Part 4: Francis Thicke on Big Ag, CAFOs, and the Future

My 5: Francis Thicke, Organic Dairy Farmer, Political Candidate

Take Action to Support Healthy Foods

School

"Kevin's Law" provides "science-based food safety criteria ... to prevent contaminated meat and poultry from entering our food supply...." Photo: © Michael Chamberlin - Fotolia.com

Although we’ve written briefly about the movie Food, Inc., the following letter, written to friends in Iowa by Lynn Fallon, is well worth adding to the conversation. At the end, Lynn urges us to write to our elected officials to help support sustainable agriculture. She lists those who serve Iowa, but the issues involved touch all of us. If you live in the U.S., you can find the contact information for your governor and state legislators, US Senator and Representative, and the president and vice president here. We appreciate Lynn’s willingness to allow us to publish this excerpt from her letter. — Julia Wasson, Publisher


Dear Friends,

Over the weekend we saw the movie, Food, Inc. with friends. We were told to have dinner first because the movie would take away our appetite. We didn’t doubt that possibility. But, for one very simple reason, we don’t have the same kind, or the same level, of concern: We know where nearly all our food comes from, and we know the producers and growers who provide it.

Still, the movie is unsettling. None of us were vegetarians before seeing the movie, nor did we leave ready to become vegetarians.  But the level of cruel and inhumane treatment of animals in the film was difficult to watch. And, witnessing the levels of bacteria, chemicals, and waste products involved in America’s industrialized food system was very disconcerting, to say the least.

Even more startling and heart-wrenching was the segment of the film that featured the death of a toddler. In 2005, Congresswoman Anna Eshoo brought H.R. 3160, the Meat and Poultry Pathogen Reduction and Enforcement Act (“Kevin’s Law”) to the floor of the House with this introduction: “Kevin’s Law is named in memory of 2 1/2-year-old Kevin Kowalcyk, who died so tragically in 2001 after eating a hamburger contaminated with E. coli O157:H7. Kevin’s untimely death was agonizing and brutal. No person should experience the pain that Kevin did, and no family should have to bear witness to a loved one suffering in the way he did…. Passage of Kevin’s Law would put into place major recommendations of the National Academy of Sciences and the National Advisory Committee for Microbiological Criteria for Foods, both of which have consistently supported greater federal enforcement of food-safety standards.”

At the other end of the spectrum was Joel Salatin, owner of Polyface Farms in Virginia. His animals are raised humanely and processed on site with exponentially lower bacteria counts than the nearby industrial meat-packing plant. Animals live outside and have adequate space, clean water, shelter from the elements when necessary and exposure to sunshine. Many customers drive several hundred miles to buy their meat from Salatin, because they have a relationship with him and know how his animals are raised and processed.

In Iowa, there are more and more farmers like Salatin — and it’s important for us to support them, for their sake and for ours.

Did you know that if Iowans ate five servings of fruits and vegetables per day, and Iowa farmers supplied that produce for just three months of the year, production and marketing for these additional crops would add $302.4 million and 4,094 jobs to the Iowa economy (Swenson, D. The Economic Impacts of Increased Fruit and Vegetable Production and Consumption in Iowa: Phase II. Ames, IA: Leopold Center for Sustainable Agriculture; May 2006.) And that’s just fruits and vegetables! Think of the possibilities for family-farm raised meat, dairy, cheese and a huge range of value-added products.

I recently attended a Communities of Practice conference put on by the Leopold Center. This conference brought together many types of people interested in local agriculture — farmers, nutritionists, educators, social service agency directors, economists, grassroots organizers, and food-industry business owners. They came together to share what they know, to learn from one another regarding different aspects of their work and to provide a social context for that work. These leaders are working to make it easier to connect producers with consumers/eaters.

But — there’s plenty you can do, too!

Actions You Can Take

Buy Locally

Find a farmer or CSA (community supported agriculture) near you.


Educate Yourself

Here are several websites that will present you with an array of topics:

Crossroads Resource Center

Drake University Law School

Environmental Nutrition Solution


Support Nutritious School Lunches

The summer recess is coming up, and during their town hall meetings, we need to contact specific elected officials who serve on committees that deal with the Child Nutrition Act re-authorization. This is the legislation that contains funding for the Farm to School program. We need to let them know we want good food in our schools. Please email, call or write your Senator and Representative in support of the Farm to School program. And, if possible, attend a town hall meeting with your elected official. Their contact information is included here:

Senator Tom Harkin
Email Address

Office Locations
Phone: (202) 224-3254

Senator Charles Grassley (information for phone, email, and office locations)

Congressman Dave Loebsack
Phone: (202) 225-6576
Email Address
Office Locations

Congressman Tom Latham (information for phone, email, and office locations)

Thanks for reading!

Lynn Fallon


Blue Planet Green Living (Home Page)